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Prologue 
 
The final objective that accomplishes the first work is to find the laws that regulate the 
continuous nuclear fusion with elementary substances of hydrogen family. 

I have given the first step with the publication of “QEDa Theory – The atom and their nucleus”. 
The second step is the current work with the publication of the laws that regulate the 
nuclear stability of hydrogen family. I will give the third step: it is prepared the edition of 
the laws that regulate the nuclear stability of Helium family. 

I have suffered a delay of more than six months due to the intense analysis work that I 
should carry out to determine the origins of what today we know as “nuclear strong 
interaction”. In this work, you will see this interaction on page 12 and 14, with the name of 
"the spin magnetic interaction" and with enormous magnitude. Incredibly, for my surprise, this 
interaction was being of magnetic origin instead of electrostatics. 

In the opportunity of writing the “QEDa Theory – The atom and their nucleus” was to me 
impossible to determine the origin of “nuclear strong interaction”. For this reason I applied the 
energy expressions as the only way to determine the equilibrium state of the nucleus of 
elementary substances, producing considerable errors in atomic substances of low number 
that now I correct it with this report. 

Due to the necessity to solve in definitive form and to determine the laws that govern 
inside the nuclear field, for the better future in our descendants, I expect if it possible the 
experimental confirmation or correction, starting from the gyro-magnetic magnitudes of 
the hydrogen 1, because the smallest adjustment possibility does not exist to the 
expressions published in this report (see the last paragraph of page 31). 

I comment them that apparently we have not advanced much, regarding to the ancient 
Egyptian civilization, in that time the scientific knowledge remained privately protected in 
priests’ hands. Now, the same thing happens again, nowadays the scientific reports with 
experimental data remain saved into official or private institutions with impossible access, 
or in bookstores or web sites with very high cost. 

I apology the briefness of the report and my English usage. 

Sincerely, 

Cordoba – Argentine, February 6, 2007 
 
 
 
 
 
 

 
 
 
 
 
 
 
02/06/2007 e-mail: dcaminoa@gmail.com  personal website: http://dcaminoa.webhop.net  
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Stability of Hidrogen family

Initial note on hidrogen family stability 

This publication correct and update the magnitudes given for hydrogen 1 1H , deuterium 
2H  and tritium 3H  on the initial version of “QEDa Theory – The atom and their nucleus.” 

Dimensional and constant units 

The system of dimensional units that I use is the IS (International System). 

I give the inertial mass of particles in function of the inertial mass of electron; therefore, I 
take as unit of the inertial mass of other particles in function of the electron’s inertial mass. 
That derives from the analysis carried out in the first section of “QEDa Theory – The atom 
and their nucleus” . Is expressed the electric constant respecting classic and old expression. I 
use the values published by NIST – National Institute of Standards and Technology for: the 
constant of Planck, the constant of elementary charge, the magnetic constant and the speed 
of light. 

 
Assigned magnitude 

Symbol Constant Value Dimensional units 

h  Planck constant 346.6260693 10−×  Joule second×  
q  Elementary charge 191.60217653 10−×  Coulomb  
c  Speed of light in vacuum 299,792,458.  -1Meter second×  

ek  Electric constant1 ( 2 -710⋅c  exact) 98.98755178736817550659... 10×  2 -2Newton meter coulomb× ×

0μ  Magnetic constant2 ( -74 10π⋅ ⋅ exact) -61.25663706143591728850... 10×  -2Newton ampere×  
em  Inertial electron mass 319.1093826 10−×  Kilogram  NIST 

em  Inertial electron mass3 319.099726139675734... 10−×  Kilogram  QEDa 

pm  Inertial proton mass 271.67262171 10−×  Kilogram  NIST 

pm  Inertial proton mass (  1,835. exact×em ) 271.669799746630497... 10−×  Kilogram  QEDa 

nm  Inertial negatron mass 
 ( Neutron mass proton mass− ) 

302.30557 10−×  Kilogram  NIST 

nm  Inertial negatron mass (  3. exact×em ) 302.729917841902720... 10−×  Kilogram  QEDa 

Note: (1) The electric constant does not figure in NIST (it is exactly equal to the square of 
the speed of light, divided by the value of 10,000,000.). 

           (2) The magnetic constant figured in NIST as permeability of vacuum. 
           (3) The mass of the electron in QEDa was calculated starting from the value of the 

frequency of wave ( ( ) 152.46606141318734 0.03  10  Herz× ) for Lyman’s quantum skip 
1 2←S S , with enormous precision, obtained by Udem, Huber, Gross, Reichert, 
Prevedelli, Weitz and Hansch. The calculation expression of the inertial mass of 
electron is (see on page 115 of QEDa Theory – The atom and their nucleus and note 
on page 15 of this report): 

                                               
     

 

In the following sections, were calculated the magnitudes that are between parentheses 
with the physical constants published by NIST – National Institute of Standards and Technology. 
Were calculated the magnitudes that are not between parentheses with the new physical 
constants corrected in QEDa. 

( ) ( )
( )

2 15

22 -1

31

8 137  J.s 2.46606141318724 10  Hz
                                                                       

3 m.s

        9.09972613967573395576494168765810157681571937691372670611564 10  −

⋅ ⋅ ⋅ ×
= =

⋅

= ×

e

h
m

c
1

kg.
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Stability of Hidrogen family 

Hydrogen 1 stability 
The hydrogen 1 ( 1H ) stability is dynamic-potential in accordance with N. Bohr has 
determined but with the proton forming their nucleus in cardinal orbit. For more detail, see 
“QEDa Theory – The atom and their nucleus”. 

The dynamic equilibrium of the two particles of hydrogen atom (one electron and one 
proton) is only given if they are the same exactly in magnitude, in the inertial electronic 
resultant, in the electric interaction between electron and proton resultant, and the inertial 
protonic orbital resultant. 

Is established the inertial electronic resultant i
eF  by following relationship 

 
 
 
 
 
 
where  ev  is the medium tangential speed of electron, c  is the speed of light, v

eQ  is the 
quantum vectorial number calculated for electron, v

el  is quantum state of the electron (the 
bigger integer most closest whereby the value has been calculated), er  is the orbit radius of 
electron, h  is the constant of Planck and em  is the inertial mass of electron. 

Is established the electric interaction between the electron and the proton resultant e
epF  by 

following relationship 
 
 
 
 
where  ek  is the electric constant, q  is the elementary charge and d  is eccentricity of the 
center of proton’s orbit cardinal radius. 

Is established the inertial protonic orbital resultant i
OpF  by following relationship 

 
 
 
 
 
where ϖ  is the angular velocity (the speed that always rotates) of the electron in orbit, in 
radians per second. 

Then, equaling member to member these three resultants, this are given respectively by the 
expressions 2, 3 and 4, we obtain the expression 5 that enunciate to us as the dynamic 
necessary condition in function of the quantum vectorial number, so that both particles can 
remain in atomic orbital. 
 
 
 
 
 

( )

2 2

2 2                      

2 π

⋅ ⋅
= =

+ ⎛ ⎞⋅
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k q k qF
r d h Q d

c m

3
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2 2 4 22
2

2 42

42being                                     
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ππϖ ϖ

π

⋅

⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅
= = = ∴ = ⋅ ⋅ =

⋅ ⋅ ⋅
⋅ ⋅ ⋅
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e

v
e piee e

Op pv v v
ee e e

e

c Q
c m m dlv c m F m d

h Qr h l h l
c m

4
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ππ
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Stability of Hidrogen family

This last expression we allows to define a system of two equalities, the expressions 6 and 7 
 
 
 
 
 
Then, if we solve them, regarding the two unknown quantity that we have left, magnitude 
the quantum vectorial number and magnitude the eccentricity of center of proton’s orbit 
cardinal radius, the results will be the following 
 
 
 
 
 
 
Then, in function of the quantum vectorial number calculated, the orbit radius of electron 

er  is 
 
 
 
 
 
The magnitudes of interactions according to the quantum state of hydrogen 1 and the 
orbital radius of particles are: 

 The inertial electronic resultant is: 
   
 
 
 
 

 The electric interaction between electron and proton resultant is:  
 
 
 
 
 
 
 

 The inertial protonic orbital resultant is: 
   
 
 
 
 

These calculated values satisfy the conditions of the atomic equilibrium of hydrogen 1.  

( ) ( )

Second   expressionFirst   expression

2 4 23 2 2 2

4 2 4 22

42                     and         

2 2

ππ
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e pe e e e

vv vv
ee ee

e e
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6         7
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Stability of Hidrogen family 

Deuterium nuclear stability 

The nuclear stability of deuterium or hydrogen 2 ( 2H ) is also dynamic-potential. Two 
protons and one internal negatron form the nucleus and one more peripheral electron 
integrates the deuterium atom. All the orbits of deuterium belong and they are on oneself 
plane common to all of them. For more detail, see “QEDa Theory – The atom and their 
nucleus”. 

At nuclear level in deuterium, the following interactions exist. 
Is established the electric interaction between protons resultant e

ppF  by following 
relationship: 
 
 
where A  is the masic number (protons quantity) and pr  is the orbit radius of proton. 

Is established the spin magnetic interaction between protons resultant m
ppF  by following 

relationship: 
 
 
 
 
 
 
 
 
where 0μ  is the magnetic constant, v

pl  is the quantum state of the protons (the bigger 
integer most closely whereby the value has been calculated) and pm  is the inertial mass of 
proton. 

Is established the inertial protonic resultant i
pF  by following relationship: 

 
 
 
 
 
 
where pv  is the medium tangential speed of protons and v

pQ  is the quantum vectorial 
number calculated for protons. 

Is established the inertial negatronic resultant i
nF  by following relationship: 

 
 
 
where Z  is the atomic number, ( −A Z ) is negatrons quantity, nv  is the medium tangential 
speed of negatron (it is the speed of light to be on a smaller radius that the negatronic 
cardinal radius) and nm  is the inertial mass of negatron. 
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Stability of Hidrogen family

Is established the electric interaction between protons and negatron resultant e
pnF  by 

following relationship: 
 
 
 
If the following condition is completed is given to the dynamic equilibrium of deuterium 
nucleus. Therefore, the nucleus will be in equilibrium and the particles will remain in orbit 
if the resultants of acting interactions are exactly equal. The electric interaction between 
protons resultant more the spin magnetic interaction between protons resultant, minus the 
inertial protonic resultant and minus the inertial negatronic resultant, it should be 
necessarily equal to zero. Is enunciated this condition for the protons in the next 
expression. 
 
 
 
 
 
 
 
Another condition that should be satisfied, it is the negatronic dynamic equilibrium. Is 
enunciated this condition for the only negatron in the following expression. 
 
 
 
 
Then, if we solve this system of equations 19 and 20, we can know the orbit radius of 
protons and quantum state; the results will be following 

 
 
 
 
 
where pr  is the orbit radius of protons, Dpk  is a calculation constant for the protons of 
deuterium with the magnitude 1.347498814303346836851460466278  inside calculations of 
NIST  and the magnitude 1.577028210282557685317783580103  for the calculations inside of 
QEDa, v

pQ  is the quantum vectorial number calculated for protons, v
pl  is the quantum 

state of the protons (the bigger integer most closest whereby the value has been calculated). 
In addition, the negatron results will be following: 
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Stability of Hidrogen family 

where nr  is the orbit radius of negatron, r
nQ  is the quantum radial number calculated for 

negatron and r
nl  is the quantum state of the negatron (the smaller integer most closest 

whereby the value has been calculated). Dnk  is a calculation constant for the negatron of 
deuterium with the magnitude 0.136052935504633404351082504036  inside calculations of 
NIST  and the magnitude 0.179932538252258023003804510154  for the calculations inside of 
QEDa.  

The magnitudes of the nuclear interactions according to the quantum state of the 
deuterium nucleus and the orbit radius of the nuclear particles are: 

 The electric interaction between protons resultant is: 
 
 

 The spin magnetic interaction between protons resultant is: 
 
 
 
 
 
 

 The inertial protonic resultant is: 
 
 

 The inertial negatronic resultant is: 
 
 

 The electric interaction between protons and negatron resultant is:  
 
 

These calculated values satisfy the conditions of nuclear equilibrium, the magnitudes 
between parentheses correspond to calculations with constants from NIST. 
 
 
 
 

The calculations with high precision are: 

1- Inside of QEDa: 

 
 
 
 
 

2- Inside of NIST: 
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Stability of Hidrogen family

Deuterium electronic stability  

The electronic stability is also dynamic-potential. For more detail, see “QEDa Theory – The 
atom and their nucleus”. The dynamic equilibrium of the electron exists if it is achieve in the 
following condition.  
 

 

 

 

where i
eF  is the inertial electronic resultant, e

NeF  is the electric interaction between nucleus 
and electron resultant, er  is the orbit radius of electron, v

eQ  is the quantum vectorial 
number calculated for electron, em  is the inertial mass of electron, c  is the speed of light, 
h  is the constant of Planck and v

el  is the quantum state of the electron (the bigger integer 
most closest whereby the value has been calculated). 

Then, if we solve the system of equations 39, 40 and 41 we can know the orbit radius of 
electron, the quantum state of electron and the medium tangential speed of electron, the 
results will be following 
 

 

 

 

 

These calculated electronic magnitudes are exactly valid for deuterium and tritium, except for hydrogen 1 
that have a minor radial quantum state. 
IMPORTANT: I have not considered the displacement of the nucleus on their center ( d ) 
or ( Opr ) like in the hydrogen 1, because for the relation of nuclear mass and electronic mass 
have insignificant magnitude on their value.  

 

The theoretic value of the wave frequency for the Lyman’s quantum skip 1 2←S S  of 
hidrogen 1, is (see on page 112 of QEDa Theory – The atom and their nucleus.): 
 

 

 

Note: The value calculated for QEDa is inside the limits specified by the value 
measured according obtained by Udem, Huber, Gross, Reichert, Prevedelli, 
Weitz and Hansch; meanwhile the magnitudes with NIST constants are far. 
This calculation shows that the electron mass in QEDa is correct. 
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Stability of Hidrogen family 

Tritium nuclear stability 

The stability of the tritium or hydrogen 3 ( 3H ) is also dynamic-potential. Three protons 
and two internal negatrons form the nucleus and one more peripheral electron integrates 
the tritium atom. All the orbits of the tritium belong and they are on two traverse planes, 
one of them common to two protons and two negatrons and one electron; and the other 
traverse plane for an isolated proton. For more detail, see “QEDa Theory – The atom and their 
nucleus”. 

In this case we have the same interactions that in deuterium, but with the addition of the 
electric interaction between negatrons due to the existence of two negatrons in their 
nucleus. 

At nuclear level in the tritium, the following interactions exist. Is established the electric 
interaction between protons resultant e

ppF  by following relationship: 
 
 
 

where A  is the masic number (quantity of protons) and pr  is the orbit radius of protons. 

Is established the spin magnetic interaction between protons resultant m
ppF  by following 

relationship: 
 
 
 
 
 
where 0μ  is the magnetic constant, v

pl  is the quantum state of the protons (the bigger 
integer most closely whereby the value has been calculated) and pm  is the inertial mass of 
proton. 

Is established the inertial protonic resultant i
pF  by following relationship: 

 
 
 
 
 
 
where pv  is the medium tangential speed of protons and v

pQ  is the quantum vectorial 
number calculated for protons. 

Is established the inertial negatronic resultant i
nF  by following relationship: 

 
 
 
where Z  is the atomic number; then, ( −A Z ) is the negatrons quantity, nv  is the medium 
tangential speed of negatrons (it is the speed of light to be on a smaller radius that the 
negatronic cardinal radius) and nm  is the inertial mass of negatron. 
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Stability of Hidrogen family

Is established the electric interaction between protons and negatrons resultant e
pnF  by 

following relationship: 
 
 
 
 
Is established the electric interaction between negatrons resultant e

nnF  by following 
relationship: 
 
 
 
The dynamic equilibrium of the tritium nucleus exists if the following condition is 
completed. Therefore, the nucleus will be in equilibrium, and the particles will remain in 
orbit, if the following resultants of the acting interactions are exactly equal. The electric 
interaction between protons resultant e

ppF  minus the inertial protonic resultant i
pF  and 

more the spin  magnetic interaction between protons resultant m
ppF , it should be necessarily 

equal, to the inertial negatronic resultant i
nF  more the electric interaction between 

negatrons resultant e
nnF . Is enunciated this condition in the next expression. 

 
 
 
 
 
 
 
 
 
Another condition that should be satisfied, it is the negatronic dynamic equilibrium. The 
inertial negatronic resultant i

nF  more the electric interaction between negatrons resultant 
e

nnF  it should be necessarily equal to the electric interaction between protons and negatrons 
resultant e

pnF . Is enunciated this condition for the negatrons in the next expression. 
 
 
 
 
Then, if we solve this system of equations 52 and 53, we can know the orbit radius of 
protons; the results will be show next: 

 
 
 
 
 
 
where Tpk  is a calculation constant for the proton of tritium inside the calculations in 
NIST with value of 2.446462597070415245781305202399 , and for calculations inside of 
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Stability of Hidrogen family 

In addition, negatronic results will be show next: 

 
 
 
 
 
 
where nr  is the orbit radius of negatrons, r

nQ  is the quantum radial number calculated for 
negatrons, r

nl  is the quantum state of negatrons (the smaller integer most closest whereby 
the value has been calculated), Tnk  is a calculation constant for the negatron of tritium with 
value of 0.196273090019089851976374916376  inside the calculations in NIST, and for 
calculations inside of QEDa is 0.253446432930161058560969422615 . 

The calculations with high precision are: 

1- Inside of QEDa: 

 

 

 

 

2- Inside of  NIST: 

 

 

 

 

The magnitudes of the nuclear interactions according to the quantum state of tritium 
nucleus and the orbit radius of nuclear particles are:  

 The of electric interaction between protons resultant is: 
 
 

   
 

 The spin magnetic interaction between protons resultant is: 
 
 
 
 
 
 
 

( )
( )

( )

-15

3
-15

3

3.36090820604525654827179139671 10
 meter                                        

2 2.91139383323200886771935674817 10
38.33974097241then           

π
×⋅ −⋅

= ⋅ =
⋅ ⋅ ⋅ ⋅ ×

= =
⋅ −

⋅
⋅

nTn
n

n p

r
n

n
Tn

p

m A Zh kr
c m m A

Q
m A Z

k
m A

56

( ) ( )
710556133686623070 38.

                           
52.4054110977518732283897406887 52.

∴ =r
nl     57

-15

-15

5.74929478880087771646942914629344767161516253250422898927999 10  meter.     

3.36090820604525654827179139671467627876518999084715129503185 10  meter.     
2.80858911226415175477200136

= ×

= ×

=

p

n

Tp

r

r
k

58

59

811006814241409301757812500000 Dimensionless.     

0.25344643293016105856096942261501681059598922729492187500 Dimensionless.     =Tnk

60

61

-15

-15

5.29216218698668302656688693187917861692983912716359877725721 10  meter.     

2.91139383323200886771935674817388444202488050455654629262474 10  meter.     
2.44646259707041524578130520

= ×

= ×

=

p

n

Tp

r

r
k

62

63

239938050508499145507812500000 Dimensionless.     

0.19627309001908985197637491637578932568430900573730468750 Dimensionless.     =Tnk

64

65

( )

2

2

8.724549189576459085060378129135  Newtons.             
10.29688492407322009114523098114

⋅ ⋅
= =

⋅
e e
pp

p

k qF
r

66

( )
( ) ( )

( )

2 2 2 2
23 2

0 4 22

2

4
2 1

242.383032993947438171744579449
                                  Newtons.            

263.741682526252191109961131588

π πμ

π

⎡ ⎤⋅ ⋅ ⋅ ⋅ ⎢ ⎥⋅ ⋅ ⋅ ⋅ ⋅ − ⋅
⎢ ⎥⋅ ⎣ ⎦= =

⋅ ⋅

=

p pv
p p v v

p pm
pp

p

c m r
m c q l Sin

h l l
F

h r

67



Daniel Eduardo Caminoa Lizarralde 
 
 

 19

Stability of Hidrogen family

 The inertial protonic resultant is: 
 
 
 

 The inertial negatronic resultant is: 
 
 
 

 The electric interaction between protons and negatrons resultant is:  
 
 
 
 
 

 The electric interaction between negatrons resultant is:  
 
 
 
 

These calculated values satisfy the conditions of nuclear equilibrium, the magnitudes 
between parentheses correspond to calculations with NIST constants. 

 

 

 

 

 

Tritium electronic stability  

The electronic stability of tritium is also dynamic-potential and exactly equal in magnitudes 
to deuterium. For more detail, see the Deuterium electronic stability section on page 15. 
 
 
 
 
 
Note: All the calculations carried out in this study are only valid for atoms of elementary substances taken 
in isolated form and without any external influence to them. 
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Stability of Hidrogen family 
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Gyromagnetic ratios of Hydrogen 1 and elementary particles 

Initial note on gyromagnetic ratios of hidrogen 1 

This publication correct and update the magnitudes given to hydrogen 1 1H  on the initial 
version of “QEDa Theory – The atom and their nucleus.” 

The gyromagnetic ratios are the ratios of the magnetic dipole moment to the mechanical 
angular momentum. 

Were calculated the magnitudes with corrected constants (see “Atomic and nuclear stability of 
the Hydrogen family” separate “Dimensional and constant units” on page 9). As always the 
magnitudes between parentheses correspond with constants known at the present (NIST – 
National Institute of Standards and Technology). 

Quantum states and orbit radius of the hydrogen 1 

To be able to work with angular and magnetic moments, before we need to know the 
magnitudes of the orbit radius and the medium tangential speeds of the two particles that 
integrate the hydrogen 1. Then, there is a summary of these summarized magnitudes of 
“QEDa Theory – The atom and their nucleus” and “Atomic and nuclear stability of the Hydrogen 
family” on page 10. 

Is established the quantum state of electron by following relationship 
 
 
 
where v

eQ  is the quantum vectorial number calculated for electron, c is the speed of light, 
em  is the inertial mass of electron, er  is the orbit radius of electron, h is the constant of 

Planck and v
el  is the quantum state of the electron (the bigger integer most closely whereby 

the value has been calculated). 

Is established the quantum state of proton by following relationship 
 
 

where v
pQ  is the quantum vectorial number calculated for proton, pm  is the inertial mass of 

proton, cd
pr  is the cardinal orbit radius of proton (according to the expression 78) and v

pl  is 
the quantum state of the proton (with the number one because the proton rotates in the 
orbit of protonic cardinal radius). 

Is given the orbit radius of electron to 
 
 
 
The protonic cardinal orbit rotates displaced forming a nuclear orbit with a shift given by 
the following expression 
 
 
 

Is given the orbit radius of electron spin ser  to 
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Gyromagnetic ratios of Hydrogen 1 and elementary particles 

Functionally, can be considered, the protonic cardinal orbit as if was the spin of the 
particle, and is given to 
 
 
 
Is given the medium tangential speed of electron to 
 
 
 
Is given the medium tangential speed of proton in cardinal orbit to 
 
 
 
 
Is given the medium tangential speed of electron spin to 
 
 
 
 
Functionally, the traverse vector on the electronic orbit plane of the proton in cardinal 
orbit can be considered as if was the medium tangential speed of orbital protonic spin, 
them: 
 
 
 

The orbital angular momentum of Hydrogen 1 particles  

With the purpose of facilitate the calculations, we will carry out them in function of the 
quantum states of atomic particles. 

Is given the orbital angular momentum of electron oeϕ  by 
 
 
 
 
Is given the orbital angular momentum of proton orbit ϕop  by 
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Gyromagnetic ratios of Hydrogen 1 and elementary particles 

The spin angular momentum of Hydrogen 1 particles  

Is given the spin angular momentum of electron seϕ  by 
 
 
 
 
 
 
Is given the spin angular momentum of protons spϕ  by 
 
 
 
 
 
 
The magnetic dipole moment 

For the calculation of the magnetic dipole moments, it will be used the following properties 

(a) The electronic nodal frequency of passage ef  is 
 
 
 
 
 
(b) The protonic orbital nodal frequency of passage Opf  is 
 
 
 
 
 
 
(c) The electronic spin frequency of passage sef  is 
 
 
 
 
 
 
 
(d) The protonic orbital spin frequency of passage spf  is 
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Gyromagnetic ratios of Hydrogen 1 and elementary particles 

(e) The electronic nodal electric intensity eI  is 
 
 
 
(f) The protonic orbital nodal electric intensity pI  is 
 
 
 
(g) The electronic spin electric intensity seI  is 
 
 
 
(h) The protonic orbital spin electric intensity spI  is 
 
 
 
(i) The electronic orbital area that should be considered  e  is 
 
 
 
(j) The protonic orbital area that should be considered  p  is 
 
 
 
(k) The electronic spin area that should be considered  se  is 
 
 
 
 
 
(l) The protonic orbital spin area that should be considered  sp  is 
 
 
 

The orbital magnetic dipole moment of hydrogen 1 

Is given the orbital magnetic dipole moment of the electron oeη  by 
 
 
 
 
 
Is given the orbital magnetic dipole moment of proton opη  by 
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Gyromagnetic ratios of Hydrogen 1 and elementary particles 

The spin magnetic dipole moment of hydrogen 1 

Is given the electronic spin magnetic dipole moment seη  by 
 
 
 
 
 
 
 
Is given the orbit protonic spin magnetic dipole moment spη  by 
 
 
 
 
 
 
 
 
 
Gyromagnetics ratios and Landé factors of elementary particles 

The particles are isolated and inside the cardinal orbit (the quantum state is equal to one). 
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Gyromagnetic ratios of Hydrogen 1 and elementary particles 

 
 
 
 
 
 
 

 

 

 

 

 

 

Landé factors are 
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Gyromagnetic ratios of Hydrogen 1 and elementary particles 

Orbital: Gyromagnetic ratios and Landé factors of hydrogen 1 

Is given the gyromagnetic ratio Oeγ  and Landé factor Oeg  of the orbital electronic by  
 
 
 
 
 
 
 
 
 
 
 
 
 
Is given the gyromagnetic ratio Opγ  and Landé factor Opg  of protonic orbital or nucleus by 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Atom: Gyromagnetic ratios and Landé factors of hydrogen 1 
Is given the gyromagnetic ratio γ H  and Landé factor Hg  of hidrogen 1 atom by 
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Gyromagnetic ratios of Hydrogen 1 and elementary particles 

Summary of hidrogen 1 
It is regrettable on this Physics field contains very few variables to compare with the 
obtained data of experimental physics, whereby it does not carry out any comparison or 
whatever comment. 

First part - Calculations performed according to constants of NIST 

Table 1: Gyromagnetic ratios and Landé factor of elementary particles. 

Particle Gyromagnetic ratio -1Hz.T  Measure unit Landé factor 

Electron 108.79410054639707183837890625000 10− × -1Hz.T  1. 
Proton 7 4.78941687896661236882209777832 10× -1Hz.T  1. 
Negatron 103.47457793517493896484375000000 10− × -1Hz.T  1. 

Table 2: The orbital gyromagnetic ratios and Landé factor of Hydrogen 1. 

Particle in orbit Gyromagnetic ratio -1Hz.T  Measure unit Landé factor 

Electron 108.79410054639707031250000000000 10− × -1Hz.T  0.9999≈1. 
Proton 7 4.78941617123339548707008361816 10× -1Hz.T  0.9999≈1. 

Table 4: The atomic gyromagnetic ratios and Landé factor of Hydrogen 1. 

Variable Magnitude Measure unit 

Gyromagnetic ratio  111.24453932507870742797851562500 10×  -1Hz.T  
Landé factor 2599.93471825814731346326880157  Dimensionless  

Second part - Calculations carried out according to corrected constants. 

Table 5: Gyromagnetic ratios and Landé factor of elementary particles. 

Particle Gyromagnetic ratio -1Hz.T  Measure unit Landé factor 

Electron 108.80343268251967926025390625000 10− × -1Hz.T  1. 
Proton 7 4.79751099864832684397697448730 10× -1Hz.T  1. 
Negatron 102.93447756083989295959472656250 10− × -1Hz.T  1. 

Table 6: The orbital gyromagnetic ratios and Landé factor of Hydrogen-1. 

Particle in orbit Gyromagnetic ratio -1Hz.T  Measure unit Landé factor 

Electron 108.80343268251967773437500000000 10− × -1Hz.T  0.9999≈1. 
Proton 7 4.79751028882942348718643188476 10× -1Hz.T  0.9999≈1. 

Table 8: The atomic gyromagnetic ratios and Landé factor of Hydrogen 1. 

Variable Magnitude Measure unit 

Gyromagnetic ratio  111.24586050363005813598632812500 10×  -1Hz.T  
Landé factor 2598.30451047431324695935472846  Dimensionless  
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Gyromagnetic ratios of Hydrogen 1 and elementary particles 

Important note: 

According to CODATA 1986 
      The proton gyromagnetic ratio is ( )' 7

2/ 2 4.2576375 10   uncorrected H O ,  sph. , 25 Cγ π = ×p , 
while the value calculated in theoretical form (expression 120) is: 

 
                     [ ]' 7 -1 QEDa Constants/ 2 4.79751028882942348718643188476 10  Hz.T .       γ π γ = ×p Op  
          and     ( ) [ ]' 7 -1 NIST Constants/ 2 4.78941617123339548707008361816 10  Hz.T .    γ π γ = ×p Op  
 
      The shielded proton magnetic moment is ( )' 26

21.41057138 10   H O ,  sph. ,  25 Cμ −= ×p , 
while the value calculated in theoretical form (expression 119) is: 

 
                     [ ]' -27 2 QEDa Constants5.05931924496662356458549820687 10  A.m .      μ η = ×p Op  
          and     ( ) [ ]' -27 2 NIST Constants5.05078341555673575732950175838 10  A.m .    μ η = ×p Op  
 
In the determination of magnetic fields’s magnitude and intensity in the Magnetic 
Resonance System especially, it is suitable to use a hydrogen 1 test-tube in the setup (to 
avoid interactions among different atoms) and use the gyromagnetic ratios values calculated for 
proton and electron (see expressions 116, 120 and 124). 

This is because the calculated values are so much for NIST as well as QEDa, these can 
only suffer minimal corrections in the future. 
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Gyromagnetic ratios of Hydrogen 1 and elementary particles 
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Gyromagnetic ratios of Deuterium 

Initial note on gyromagnetic ratios of deuterium 

This publication correct and update the magnitudes given to deuterium on the initial 
version of  “QEDa Theory – The atom and their nucleus.” 

Two protons and one internal negatron form the nucleus and plus one more peripheral 
electron integrate the deuterium atom. All the orbits of deuterium belong and they are on 
oneself plane common to all of them. For more information, see “QEDa Theory – The atom 
and their nucleus”  and “Atomic and nuclear stability of the Hydrogen family” on page 12. 

Were calculated the magnitudes with corrected constants (see “Dimensional and constant units 
” on page 9). The magnitudes between parentheses correspond with the constants known 
at the present (NIST – National Institute of Standards and Technology). In all the following 
calculations, have been calculated the magnitudes with high precision. 

Quantum states and orbit radius of the deuterium 

To be able to work with the angular and magnetic moments, before we need to know the 
magnitudes of the orbital radius and the tangential speeds of all deuterium particles. Then, 
there is a synopsis of these summarized magnitudes. 

Is established the quantum state of electron by following relationship 
 
 
 
where v

eQ  is the quantum vectorial number calculated for electron, c is the speed of light, 
em  is the inertial mass of electron, er  is the orbital radius of electron, h is the constant of 

Planck and v
el  is quantum state of the electron (the bigger integer most closely whereby the 

value has been calculated). 

Is established the quantum state of protons by following relationship 
 
 
 
Where v

pQ  is the quantum vectorial number calculated for protons, pm  is the inertial mass 

of proton, pr  is the orbital radius of protons (according to expression 5) and v
pl  is the 

quantum state of the protons (the bigger integer most closely whereby the value has been 
calculated). 

Is established the quantum state of the negatron by following relationship 
 
 
 
Where r

nQ  is the quantum radial number calculated for negatron, nm  is the inertial mass of 
negatron, nr  is the orbital radius of negatron (according to expression 6) and r

nl  is the 
quantum state of negatron (the smaller integer most closely whereby the value has been 
calculated). 
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Gyromagnetic ratios of Deuterium 

Is given the radius of orbits to 
 
 
 
 
 
 
 
 
 
Is given the radius of spin sxr  (sub-index x identifies to the particle) to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Is given the orbit medium tangential speed to 
 
 
 
 
 
 
 
 
 
 
Is given the spin medium tangential speed sxv  (sub-index x identifies to the particle) to 
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Gyromagnetic ratios of Deuterium 

The orbital angular momentum of the particles in deuterium 

With the purpose of facilitate the calculations; we will carry out them in function of the 
quantum state of atomic particles.  

Is given the orbital angular momentum of electron oeϕ  by 
 
 
 
 
 
Is given the orbital angular momentum of proton opϕ  by 
 
 
 
 
 
Is given the orbital angular momentum of negatron onϕ  by 
 
 
 
 
 
The spin angular momentum of the particles in deuterium 
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Gyromagnetic ratios of Deuterium 

The magnetic dipole moment 

For the calculation of the magnetic dipole moments, it will be used the following properties 

(a) The nodal frequency of particles passage xf  is 
 
 
 
 
 
 
 
 
 
 
(b) The spin frequency of particles passage sxf  is 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) The nodal electric intensity xI  is 
 
 
 
 
 
(d) The spin electric intensity sxI  is 
 
 
 
 
 
(e) The orbital area that should be considered  x  is 
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Gyromagnetic ratios of Deuterium 

(f) The spin area that should be considered  sx  is 
 
 
 
 
 
 
 
 
 
 
 
 
 

The orbital magnetic dipole moment of deuterium 

Is given the orbital magnetic dipole moment of electron oeη  by 
 
 
 
 
 
 
Is given the orbital magnetic dipole moment of protons opη  by 
 
 
 
 
 
 
 
Is given the orbital magnetic dipole moment of negatron onη  by 
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Gyromagnetic ratios of Deuterium 

The spin magnetic dipole moment of deuterium 

Is given the spin magnetic dipole moment of electron seη  by 
 
 
 
 
 
 
 
 
Is given the spin magnetic dipole moment of protons spη  by 
 
 
 
 
 
 
 
 
 
Is given the spin magnetic dipole moment of negatron nsη  by 
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Orbital: Gyromagnetic ratios and Landé factors of deuterium 

Is given the gyromagnetic ratio Oeγ  and Landé factor Oeg  of electronic orbital by  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Is given the gyromagnetic ratio Opγ  and Landé factor Opg  of protonic orbital by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Is given the gyromagnetic ratio Onγ  and Landé factor Ong  of negatronic orbital by 
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Gyromagnetic ratios of Deuterium 

Nucleus: Gyromagnetic ratios and Landé factors of deuterium 
Is given the gyromagnetic ratio NDγ  and Landé factor NDg  of the nucleus of deuterium by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Atom: Gyromagnetic ratios and Landé factors of deuterium 
Is given the gyromagnetic ratio Dγ  and Landé factor Dg  of deuterium atom by 
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Gyromagnetic ratios of Deuterium 

Summary of deuterium 
It is regrettable on this Physics field contains very few variables to compare with the 
obtained data of experimental physics, whereby it does not carry out any comparison or 
whatever comment. 

First part - Calculations performed according to constants of NIST 

Table 1: The orbital gyromagnetic ratios and Landé factor of deuterium. 

Particle in orbit Gyromagnetic ratio -1Hz.T  Measure unit Landé factor 

Electron 108.79410054639706878662109375000 10− × -1Hz.T  0.9999≈1. 
Protons 7 4.78941687896661311388015747070 10× -1Hz.T  2. 
Negatron 103.47457793517493896484375000000 10− × -1Hz.T  1. 

Table 2: The nuclear gyromagnetic ratios and Landé factor of deuterium. 

Variable Magnitude Measure unit 

Gyromagnetic ratio  8 1.27903665554368376731872558594 10×  -1Hz.T  
Landé factor 5.34477666382772120812205685070  Dimensionless  

Table 3: The atomic gyromagnetic ratios and Landé factor of deuterium. 

Variable Magnitude Measure unit 

Gyromagnetic ratio  109.73531891466627807617187500000 10×  -1Hz.T  
Landé factor 4069.25512441399587260093539953  Dimensionless  

Second part - Calculations carried out according to corrected constants. 

Table 4: The orbital gyromagnetic ratios and Landé factor of deuterium. 

Particle in orbit Gyromagnetic ratio -1Hz.T  Measure unit Landé factor 

Electron 108.80343268251967926025390625000 10− × -1Hz.T  1. 
Protons 7 4.79751099864832758903503417969 10× -1Hz.T  2. 
Negatron 102.93447756083989219665527343750 10− × -1Hz.T  0.9999≈1. 

 

Table 5: The nuclear gyromagnetic ratios and Landé factor of deuterium. 

Variable Magnitude Measure unit 

Gyromagnetic ratio  81.47161612151273488998413085938 10×  -1Hz.T  
Landé factor 6.13992996737405594132042097044  Dimensionless  

Table 6: The atomic gyromagnetic ratios and Landé factor of deuterium. 

Variable Magnitude Measure unit 

Gyromagnetic ratio  109.06369785373998870849609375000 10×  -1Hz.T  
Landé factor 3782.61833940777432871982455254  Dimensionless  
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Gyromagnetic ratios of Deuterium 

Important note: 

According to CODATA 1986 

      The shielded proton magnetic moment is ' 26 -11.41057138 10  J.Tμ −= ×p , while the value 
calculated in theoretical form (expression 170) is: 

                        [ ]' -26 2 QEDa Constants1.41737568079128633894730894033 10  A.m .      μ η≠ = − ×p Op  
             and     ( ) [ ]' -26 2 NIST Constants1.36250060472849467192834612443 10  A.m .   μ η≠ = − ×p Op  
      The existing differences in this magnitude are insignificant. 
 
The gyromagnetic ratio of the nucleus and the atom does not coincide (see expressions 179 
and 183) because in the calculation of CODATA has taken only one proton; in fact, exists 
in deuterium nucleus two protons and one negatron just as we have already seen. 

In the determination of magnetic fields’s magnitude and intensity in the Magnetic 
Resonance System especially, it is suitable to use a hydrogen 1 test-tube in the setup (to 
avoid interactions among different atoms) and use the gyromagnetic ratios values calculated for 
proton and electron (see Gyromagnetic ratios of Hydrogen 1 and elementary particles, expressions 
116, 120 and 124). 

This is because the calculated values are so much for NIST as well as QEDa, these can 
only suffer minimal corrections in the future. 
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 TRITIUM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Landscape of the Patagonia - Argentina       Credit: Alfredo & Sonia Buenos Aires, Argentina (STOCKXPERT 173661) 
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Gyromagnetic ratios of Tritium 

Initial note on gyromagnetic ratios of tritium 

This publication correct and update the magnitudes given to tritium on the initial version 
of  “QEDa Theory – The atom and their nucleus.” 

Three protons and two internal negatrons form the nucleus and one more peripheral 
electron integrates the tritium atom. The protons are in two transverse orbit planes; where 
one electron, two protons and two negatrons belong to an single orbital plane. For more 
information, see “QEDa Theory – The atom and their nucleus”  and “Atomic and nuclear stability of 
the Hydrogen family” on page 16. 

Were calculated the magnitudes with corrected constants (see “Dimensional and constant units 
” on page 9). The magnitudes between parentheses correspond with the constants known 
at the present (NIST – National Institute of Standards and Technology). In all the following 
calculations, have been calculated the magnitudes with high precision. 

Quantum states and orbit radius of tritium 

To be able to work with the angular and magnetic moments, we need to know before the 
orbit radius magnitudes and the medium tangential speeds of all tritium particles. Then, 
there is a concise of these summarized magnitudes. 

Is established the quantum state of the electron by following relationship 
 
 
 
where v

eQ  is the quantum vectorial number calculated for electron, c  is the speed of the 
light, em  is the inertial mass of electron, er  is the orbit radius of electron, h  is the constant 
of Planck and v
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whereby the value has been calculated). 

Is established the quantum state of the protons by following relationship 
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of proton, pr  is the orbit radius of protons (according to expression number 5) and v
pl  is 
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Is established the quantum state of negatron by following relationship 
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Is given the radius of orbits to 
 
 
 
 
 
 
 
 
 
Is given the radius of spin sxr  (sub-index x identifies to the particle) to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Is given the orbit medium tangential speed to 
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The orbital angular momentum of tritium 

With the purpose of facilitating the calculations, we will carry out them in function of 
atomic particle quantum state.  

Is given the orbital angular momentum of the electron oeϕ  by 
 
 
 
 
 
 
Is given the orbital angular momentum of the solitary proton 1ϕop  by 
 
 
 
 
 
 
Is given the orbital angular momentum of the complete protonic orbital 2ϕop  by 
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The spin angular momentum of tritium 
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Is given the spin angular momentum of the complete protonic orbit  2ϕsp  by 
 
 
 
 
 
 
Is given the spin angular momentum of the complete negatronic orbit ϕsn  by 
 
 
 
 
 
 
 
The magnetic dipole moment 

For the calculation of the magnetic dipole moments, it will be used the following properties 

(a) The nodal frequency of passage of particles xf  is 
 
 
 
 
 
 
 
 
 
 
 
 
(b) The spin frequency of passage of particles sxf  is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )
( )

( )
( )

( )
( )

( )

2 2 2

2 4 4 4

-34
2 -1

-34

2 1 1 2 1                        
2

2.10658759862005478969226166809 10
          kg.m .s .    

2.10622080326184900798667050224 10

ϕ
π π

⎛ ⎞
⎜ ⎟= ⋅ ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅ − ⋅ = − =
⎜ ⎟⋅ ⋅ ⋅
⎝ ⎠

×
=

×

v v v
p p p

sp p sp sp p v v v
pp p p

Q Q Qh hm v r m c
c ml l l

            206

( ) ( ) ( )

( ) ( )

2 2

2

-43

1 12 1 1 2                         
2 299,792,458.

11                         
299,792,458.

7.03055882279265593967788181899 10

7.03278325229066372

ϕ
π

π

= ⋅ ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅ − ⋅ =
⋅ ⋅ ⋅ ⋅

⎛ ⎞= − =⎜ ⎟⎜ ⎟⋅ ⎝ ⎠
×

=

sn n sn sn n r r
nn n

r
n

hm v r m c
c mQ Q

h

Q

( )
2 -1

-43
 kg.m .s .                

621292217986 10×
207

( )
( )

,
2 2

,, ,
, 2

,, ,

,

protons and electrons                                           
2

2
2

negatrons                                          
2 2

π
π

π

π

⋅
⋅

= = =
⋅⋅ ⋅ ⋅⋅ ⋅

⋅ ⋅ ⋅

= =
⋅ ⋅

v
e p

v
e pe p e p

e p v v
e pe p e p

e p

n
n

n

Q
c

lv c m
f

h Qr h l
c m

v cf
r

208

2

                

2
π

π

⋅ ⋅
=

⋅ ⋅
⋅ ⋅ ⋅ ⋅

r
n n

r
n n

c m Q
h h

c m Q

209

( )
( )
( )
( )

2

,
4

2
,, ,

, 2
,

,
4

, ,

1

protons and electrons                                        
2

1

negatrons                                                         

π

⋅ −
⋅

= = =
⋅ ⋅

−
⋅

v
e p

v
e pse sp e p

se sp
vse sp
e p

v
e p e p

Q
c

lv c m
f

r hQh
c m l

210

( )

( ) ( )

( )
2

2

2

                                                                                        

11
299,792, 458.                      

2 11
299,792, 458.

π

⋅ −
⋅ ⋅

= = =
⋅ ⋅

−
⋅ ⋅

r
nsn n

sn
sn

r
p n

c
Qv c mf

r hh
c m Q

211



Daniel Eduardo Caminoa Lizarralde 
 

 51

Gyromagnetic ratios of Tritium 

(c) The nodal electric intensity xI  is 
 
 
 
 
 
(d) The spin electric intensity sxI  is 
 
 
 
 
 
(e) The orbital area that should be considered  x  is 
 
 
 
 
 
 
 
(f) The spin area that should be considered  x  is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The orbital magnetic dipole moment of tritium 

Is given the orbital magnetic dipole moment of electron oeη  by 
 
 
 
 
 
 

( )
( )

( )
( )

( ) ( )

2 2
, ,

, , 2 2

, ,

2

protons and electrons                                          

negatrons                                                       

⋅ ± ⋅ ⋅
= ⋅ ± = ⋅ ± =

⋅ ⋅

⋅
= ⋅ − = ⋅ − =

e p e p
e p e p v v

e p e p

n
n n

c m q c m
I f q q

h l h l

c mI f q q
h

212

2

                − ⋅ ⋅ nq c m
h

213

( ) ( )
2 2

, ,
, ,protons and electrons                                        

negatrons                                                                                      

⋅ ± ⋅ ⋅
= ⋅ ± = ⋅ ± =e p e p

se sp se sp

c m q c m
I f q q

h h
214

( ) ( ) ( ) ( )2 2

                                                         
299,792, 458. 299,792, 458.                 ⋅ ⋅ − ⋅ ⋅ ⋅

= ⋅ − = ⋅ − =n n
sn sn

c m q c mI f q q
h h

215

( )22 2
,,2

  , , 2 2
, ,

2 2
2

  

protons and electrons                                   
2 4

negatrons                            
2 4

π π
π π

π π
π

⋅⎛ ⎞⋅
= ⋅ = ⋅ =⎜ ⎟⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠

⎛ ⎞= ⋅ = ⋅ =⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠

vv
e pe p

e p e p
e p e p

n n r
n n

h Qh Q
r

c m c m

h hr
c m Q

216

( )22 2
                

π ⋅ ⋅ ⋅ r
n nc m Q

217

( )
( )

2

,2
  , , 4

, ,

protons and electrons                                                                                                                           

1
2

π π
π

⎛ ⎞
⎜ ⎟= ⋅ = ⋅ −⎜ ⎟⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

v
e p

se sp se sp v
e p e p

Qhr
c m l

( )
( )

( ) ( )

( )

2

,22
4

,

2 2
,

2

2
  2

2
2

2 2

1

                
4

1negatrons             1                            
2 . 299,792, 458.

11

4 299,792,

π

π π
π

π

⎛ ⎞
⎜ ⎟⋅ −
⎜ ⎟
⎝ ⎠=
⋅ ⋅ ⋅

⎛ ⎞
= ⋅ = ⋅ − =⎜ ⎟

⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

⎛ ⎞⋅ −⎜ ⎟⎜ ⎟
⎝ ⎠=

⋅ ⋅ ⋅ ⋅

v
e p

v
e p

e p

sn sn r
n n

r
n

n

Q
h

l

c m

hr
c m Q

h
Q

c m

218

( )2                 
458.

219

( )
( ) ( )

( )

( )

2 222

  2 22 2

-24

-24

1                                                     
4 4

9.28222483106348986229514962175 10
 

9.27238514820703600306340067456 10

η
π π
⋅− ⋅ ⋅ − ⋅

= ⋅ ⋅ = ⋅ ⋅ = ⋅ =
⋅ ⋅ ⋅ ⋅ ⋅⋅

− ×
=

− ×

v v
e ee

oe e e v v
e ee e

h Q Qq c m q hI Z
c m mh l l

2 A.m .                220



Daniel Eduardo Caminoa Lizarralde 
 
 

 52 

Gyromagnetic ratios of Tritium 

Is given the orbital magnetic dipole moment of the solitary protons 1ηop  by 
 
 
 
 
 
 
 
Is given the orbital magnetic dipole moment of the complete protonic orbit 2ηop  by 
 
 
 
 
 
 
 
Is given the orbital magnetic dipole moment of the complete negatronic orbit onη  by 
 
 
 
 
 

The spin magnetic dipole moment of tritium 

Is given the spin magnetic dipole moment of electron seη  by 
 
 
 
 
 
 
 
 
Is given the spin magnetic dipole moment of the solitary protons 1ηsp  by 
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Is given the spin magnetic dipole moment of complete protonic orbit 2ηsp  by 
 
 
 
 
 
 
 
 
 
Is given the spin magnetic dipole moment of complete negatronic orbit ηsn  by 
 
 
 

 

 

 

 

Orbital: Gyromagnetic ratios and Landé factors of tritium 

Is given the gyromagnetic ratio Oeγ  and Landé factor Oeg  of the electronic orbital by  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Is given the gyromagnetic ratio Opγ  and Landé factor Opg  of the protonic orbital by 
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Is given the gyromagnetic ratio Onγ  and Landé factor Ong  of the negatronic orbital by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nucleus: Gyromagnetic ratios and Landé factors of tritium 
Is given the gyromagnetic ratio γ NT  and Landé factor NTg  of the tritium nucleus by 
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Atom: Gyromagnetic ratios and Landé factors of tritium 

Is given the gyromagnetic ratio γT  and Landé factor Tg  of tritium atom by 
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Summary of Tritium 

It is regrettable on this Physics field contains very few variables to compare with the 
obtained data of experimental physics, whereby it does not carry out any comparison or 
whatever comment. 

First part - Calculations performed according to NIST constants 

Table 1: The orbital gyromagnetic ratios and Landé factor of tritium. 

Particle in orbit Gyromagnetic ratio -1Hz.T  Landé factor 

Electron 108.79410054639706878662109375000 10− × 0.9999…≈1. 
Protons 7 4.78941687896661311388015747070 10× 3. 
Negatron 103.47457793517493820190429687500 10− × 1.9999…≈2. 

Table 2: The nuclear gyromagnetic ratios and Landé factor of tritium. 
Variable Magnitude Measure unit 

Gyromagnetic ratio  83.31385042839582324028015136719 10×  -1Hz.T  
Landé factor 26.2092090146788940785427257651  Dimensionless  
Table 3: The atomic gyromagnetic ratios and Landé factor of the tritium. 

Variable Magnitude Measure unit 

Gyromagnetic ratio  105.67816585008818511962890625000 10×  -1Hz.T  
Landé factor 3560.60960370100610816734842956  Dimensionless  

Second part - Calculations carried out according to the corrected constants. 

Table 4: The orbital gyromagnetic ratios and Landé factor of tritium. 

Particle in orbit Gyromagnetic ratio -1Hz.T  Landé factor 

Electron 108.80343268251967926025390625000 10− × 0.9999≈1. 
Protons 7 4.79751099864832833409309387207 10× 3. 
Negatron 102.93447756083989295959472656250 10− × 2. 

Table 5: The nuclear gyromagnetic ratios and Landé factor of tritium. 
Variable Magnitude Measure unit 

Gyromagnetic ratio  83.86528329776871085166931152344 10×  -1Hz.T  
Landé factor 30.4544429830905869494017679244  Dimensionless  
Table 6: The atomic gyromagnetic ratios and Landé factor of the tritium. 

Variable Magnitude Measure unit 

Gyromagnetic ratio  105.66032258005138702392578125000 10×  -1Hz.T  
Landé factor 3544.03778462396394388633780181  Dimensionless  
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Important note: 

 
In the determination of magnetic fields’s magnitude and intensity in the Magnetic 
Resonance System especially, it is suitable to use a Hydrogen 1 test-tube in the setup (to 
avoid interactions among different atoms) and use the gyromagnetic ratios values calculated for 
proton and electron (see Gyromagnetic ratios of Hydrogen 1 and elementary particles, expressions 
116, 120 and 124). 

This is because the calculated values are so much for NIST as well as QEDa, these can 
only suffer minimal corrections in the future. 
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Last page of report. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 


